
 Data Request Timing
Comparison of 3 protocols

Mar 5, 1991

The VME Local Station software supports three data acquisition protocols. The
first is the Classic protocol, which was the original protocol developed in 1982.
On the token ring network, it uses a special SAP to distinguish it from Acnet
header-based protocols. The other two protocols supported are based upon the
use of the Acnet header that supports general task-task commun ication across a
single network. This note describes the performance by the local station software
in its support of all three protocols.

The Classic protocol is based upon listypes and idents, two abstract specifiers
which characterize control system data requests. The design is targeted for
distributed systems, in which a single network of local stations connect to the
control system signals of a part of an accelerator and contain a local database for
their own parts. Because of this, these systems can operate in the absence of a
centralized host system. Any host can participate by using the data request
protocols.

The second is the DZero protocol, which was developed to satisfy the needs of
the D0 control system. It is an evolution of the Classic protocol in that its design
is also based upon listypes and idents.

The other is the Accelerator protocol, developed for use with the Fermilab
accelerator control system. It was designed to work only with a central ized
database. The user program running on a Vax console is given a suite of DPxxx
routines that hide the central database accesses used to build a data request.

Two sets of timings were made for each of the three protocols. One was made
from the requester’s point of view; the other was made from the replier’s point of
view. The timing was measured by software using a timer of 0.5 msec resolution
in the first case and by observing signals available on a front panel connector of
the Crate Utility board that show each task’s activity in the second.

The example used in the measurements was a data request for readings and
setting words of a number of analog channels from one other local station. The
number was varied to get the incremental timing on a per channel basis. The test
programs are local station console page applications designed for testing each
protocol.

The first test measures the time from just before a one-shot request is made until
the time that the answers are available in the application’s data arrays. For a
minimal data request, the timing is about 5 msec independent of the protocol.
The timings for a number of channels > 1 is as follows:

Data Request Timing Mar 5, 1991 page 2
Protocol #chans One-shot, msec Per channel, µ s
Classic 1 5.5

5110.0 90

DZero 1 5.5
518.5 60

Accel 1 4.5
5123.5 380

A reason for the longer time per channel in the Classic protocol compared to the
DZero protocol is that the ReqData routine called by the test application includes
a “data server” functionality for local requests, so there is work to be done before
the data request message is prepared for the network. In the other two cases, the
test program prepares the network message before the timing starts.

The second test measures the additional time spent in the Update Task due to
updating the answers in fulfilling the repetitive data request. It does not include
any time for transmitting the results across the network. It represents only the
additional load on the cpu in producing a set of answers to the data request.

Protocol #chans 15 Hz, msec Per channel, µ s
Classic 1 0.4

510.6 4

DZero 1 0.4
510.6 4

Accelerator 1 0.4
512.0 32

The increased time used by the accelerator protocol is because it was not
designed for efficient processing. The key concept that is missing is that of
specifying an array of idents to be processed under a given listype.

